
 M2-branes on orbifolds of the cone over Q1,1,1

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP08(2009)033

(http://iopscience.iop.org/1126-6708/2009/08/033)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 10:22

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/08
http://iopscience.iop.org/1126-6708/2009/08/033/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
8
(
2
0
0
9
)
0
3
3

Published by IOP Publishing for SISSA

Received: June 10, 2009

Accepted: July 16, 2009

Published: August 10, 2009

M2-branes on orbifolds of the cone over Q1,1,1

Sebastián Franco,a Igor R. Klebanovb,c and Diego Rodŕıguez-Gómezb,d
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Abstract: We study the N = 2 supersymmetric Chern-Simons quiver gauge theory re-

cently introduced in arXiv:0809.3237 to describe M2-branes on a cone over the well-known

Sasaki-Einstein manifold Q1,1,1. For Chern-Simons levels (k, k,−k,−k) we argue that this

theory is dual to AdS4 × Q1,1,1/Zk. We derive the Zk orbifold action and show that it

preserves geometrical symmetry U(1)R × SU(2) × U(1), in agreement with the symmetry

of the gauge theory. We analyze the simplest gauge invariant chiral operators, and show

that they match Kaluza-Klein harmonics on AdS4 ×Q1,1,1/Zk. This provides a test of the

gauge theory, and in particular of its sextic superpotential which plays an important role

in restricting the spectrum of chiral operators. We proceed to study other quiver gauge

theories corresponding to more complicated orbifolds of Q1,1,1. In particular, we propose

two U(N)4 Chern-Simons gauge theories whose quiver diagrams are the same as in the 4d

theories describing D3-branes on a complex cone over F0, a Z2 orbifold of the conifold (in

4d the two quivers are related by the Seiberg duality). The manifest symmetry of these

gauge theories is U(1)R × SU(2) × SU(2). We argue that these gauge theories at levels

(k, k,−k,−k) are dual to AdS4 × Q2,2,2/Zk. We exhibit calculations of the moduli space

and of the chiral operator spectrum which provide support for this conjecture. We also

briefly discuss a similar correspondence for AdS4×M
3,2/Zk. Finally, we discuss resolutions

of the cones and their dual gauge theories.

Keywords: AdS-CFT Correspondence, M-Theory, Brane Dynamics in Gauge Theories,

Conformal Field Models in String Theory

c© SISSA 2009 doi:10.1088/1126-6708/2009/08/033

mailto:sfranco@kitp.ucsb.edu
mailto:klebanov@Princeton.EDU
mailto:drodrigu@Princeton.EDU
http://dx.doi.org/10.1088/1126-6708/2009/08/033


J
H
E
P
0
8
(
2
0
0
9
)
0
3
3

Contents

1 Introduction and summary 1

2 Q1,1,1 and its dual gauge theory 4

3 The Q1,1,1 gauge theory at higher CS level 6

4 Matching of chiral operators 7

5 Orbifold projection of the quiver 9

6 M2-branes on C(Q2,2,2) and its orbifolds 10

6.1 Chiral operators 12

7 Chiral operators in the M3,2 gauge theory 13

8 Resolutions of C(Q1,1,1) 15

8.1 Symmetry breaking in the gauge theory 16

A Moduli space of the Z2 orbifold of the quiver 18

B Moduli space of the Q2,2,2 theories 20

1 Introduction and summary

Considerable progress in understanding coincident M2-branes is taking place, following

the discovery by Bagger and Lambert [1–3], and by Gustavsson [4], of the 3-dimensional

superconformal Chern-Simons theory with the maximal N = 8 supersymmetry (these

papers were inspired in part by the ideas of [5, 6]). The Bagger-Lambert-Gustavsson

(BLG) 3-algebra construction was, under the assumption of manifest unitarity, limited to

the gauge group SO(4). This BLG theory is conveniently reformulated as an SU(2)×SU(2)

gauge theory with conventional Chern-Simons terms having opposite levels k and −k [7, 8].

For k = 2 this model is believed to describe two M2-branes on the orbifold R
8/Z2 [9, 10],

but for other values of k its interpretation is less clear. A different approach to Chern-

Simons matter theories with extended supersymmetry was introduced in [11, 12]. Aharony,

Bergman, Jafferis and Maldacena (ABJM) [13] proposed that N M2-branes placed at

the singularity of R
8/Zk are described by a U(N) × U(N) Chern-Simons gauge theory

with levels k and −k (curiously, the matter content and superpotential of this theory are

the same as for N D3-branes on the conifold [14]). The Zk group acts by simultaneous

rotation in the four planes; for k > 2 this orbifold preserves only N = 6 supersymmetry.

– 1 –
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ABJM gave strong evidence that their Chern-Simons gauge theory indeed possesses this

amount of supersymmetry, and further work in [15, 16] provided confirmation of this claim.

Furthermore, for k = 1, 2 the supersymmetry of the orbifold, and therefore of the gauge

theory, is expected to be enhanced to N = 8. This is not manifest in the classical action

of ABJM theory. The symmetry enhancement for k = 1, 2 is expected to be a quantum

effect due to the existence of certain ‘monopole operators’ [17–19] which create quantized

flux of a diagonal U(1) magnetic field (for their recent discussions in this context, see for

example [20–22]).

In addition to the highly supersymmetric theories reviewed above, it is of obvious in-

terest to formulate AdS4/CFT3 dualities with smaller amounts of supersymmetry. N = 2

is the smallest amount that allows for simple tests of the correspondence, due to the

existence of the U(1)R symmetry, and the fact that the dimensions of short supermulti-

plets of operators are determined by their R-charges. The classical actions for N = 2

Chern-Simons matter models are conveniently formulated using N = 2 superspace (see,

for example, [13, 15, 23]) which resembles the familiar N = 1 superspace in d = 4. Sev-

eral examples of N = 2 supersymmetric AdS4 supergravity backgrounds have been known

since the 80’s (see [24] for a classic review). One of them is the U(1)R × SU(3) invariant

extremum [25] of the potential in the gauged N = 8 supergravity [26], which was uplifted

to an 11-dimensional warped AdS4 background containing a ‘squashed and stretched’ 7-

sphere [27]. In [15, 21] (see also [28]) it was suggested that the dual gauge theory is the

k = 1 ABJM theory deformed by a superpotential term quadratic in one of the four chiral

bifundamental superfields. Integrating this field out, one obtains a sextic superpotential

for the remaining superfields. The Kaluza-Klein spectrum of this gauge theory matches

that of the supergravity [21, 29].

A simpler class of M-theory backgrounds are product spaces AdS4 ×X7 where X7 is a

Sasaki-Einstein manifold [24]. The N = 2 gauge theory dual to such a background arises

on a stack of M2-branes placed at the apex of the 8-dimensional cone over X7 [14]. The

well-known examples of X7 include the coset space M3,2 (often called M1,1,1) possessing

U(1)R×SU(3)×SU(2) symmetry [30], and Q1,1,1 possessing U(1)R×SU(2)3 symmetry [31].

The Sasaki-Einstein spaces M3,2 and Q1,1,1 are U(1) fibrations over S2 × CP 2 and S2 ×

S2 × S2, respectively [32]. Proposals for their dual gauge theories were made 10 years

ago in [33]; although they were not entirely satisfactory, they contained useful ideas and

inspired further research. More recently, a very interesting set of ‘M-crystal’ proposals was

advanced in [34–36], but they did not involve Chern-Simons gauge theories. During the

last year, related proposals have been made in the context of N = 2 Chern-Simons gauge

theory. A proposal [37, 38] for the theory dual to AdS4 ×M3,2 involves a U(N)3 gauge

theory with levels (−2, 1, 1); the matter content and cubic superpotential of this theory

are the same as for N D3-branes on C3/Z3. The global symmetry of the gauge theory,

U(1)R×SU(3)×U(1), is smaller than the geometrical symmetry of M3,2. Yet, this does not

necessarily invalidate the proposal: similarly to the ABJM theory with k = 1, the global

symmetry may be enhanced. A partial check on this proposal is that, for levels (−2k, k, k)

the moduli space corresponds to an orbifold M3,2/Zk whose action breaks the SU(2) part

of the global symmetry.
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The goal of this paper is further exploration of the proposal for a quiver Chern-Simons

gauge theory dual to AdS4 × Q1,1,1 [39]. This is a U(N)4 gauge theory with CS levels

(1, 1,−1,−1) coupled to certain bi-fundamental chiral superfields endowed with a sextic

super-potential; its details will be reviewed in 2. The moduli space of the abelian theory

was calculated in [39] and found to agree with the Calabi-Yau cone over Q1,1,1. However,

the manifest global symmetries of the gauge theory are only U(1)R × SU(2)×U(1), which

are smaller than the geometrical symmetries of Q1,1,1. In search of an explanation for this

fact, we suggest that the gauge theory at level k is dual to AdS4 × Q1,1,1/Zk where the

action of Zk breaks the geometrical symmetry to U(1)R × SU(2)×U(1). Therefore, in the

large k limit where the gauge theory becomes weakly coupled, there is no conflict with

the AdS/CFT correspondence [40–42].1 In section 3 we study the gauge theory [39] at

level k, and explicitly derive the action of the Zk orbifold. In section 4 the simplest chiral

operators in this gauge theory are analyzed, and shown to match Kaluza-Klein harmonics

on AdS4×Q
1,1,1/Zk. This provides a test of the gauge theory, and in particular of its sextic

superpotential which plays an important role in restricting the spectrum of chiral operators.

Thus, exploration of the proposal [39] naturally leads to orbifolds of Q1,1,1 which

preserve N = 2 supersymmetry. In addition to changing the level k, we will consider

changing the structure of the quiver gauge theory. A well-known projection technique [43]

has been used to generate new AdS5 × CFT4 dual pairs [44, 45]. More recently, such

Zn projections have been applied to the BLG and ABJM theories [12, 15, 46]; somewhat

surprisingly they lead to Zn × Zkn orbifolds of AdS4 × S7 as demonstrated through direct

calculation of the moduli space [47, 48]. In section 5 we apply a Z2 projection to the quiver

gauge theory of [39]. We find a U(N)8 quiver gauge theory which we conjecture to be

dual to the AdS4 ×Q1,1,1/(Z2 ×Z2k) background. This conjecture is given partial support

through moduli space calculations, which we present in appendix A.

Yet another N = 2 preserving orbifold of Q1,1,1 is the space Q2,2,2 = Q1,1,1/Z2 obtained

through reducing the length of the U(1) fiber by a factor of 2 (reducing it by a bigger factor

produces spaces Qp,p,p, p > 2, which turn out to break all supersymmetry).2 We find that

this kind of projection on the gravity side does not obviously correspond to a projection of

the theory [39]. Instead, in section 6 we propose two different U(N)4 quiver gauge theories

as candidate duals for AdS4 × Q2,2,2. Our proposals rely on the connections between 3d

and 4d quiver gauge theories which were first observed in [13] (the gauge group, matter

content and superpotential of the ABJM theory are the same as in the 4d gauge theory for

D3-branes on the conifold [14]), and later extended and generalized in [37, 38, 47].

Analogously, we propose that the gauge group, matter content and superpotential of

the theory dual to AdS4 × Q2,2,2 are the same as for the Z2 orbifold of the conifold the-

ory called the F0 theory [49]. We study two versions of CS gauge theories with levels

(k, k,−k,−k); their quiver diagrams are related by the 4d Seiberg duality [50].3 We con-

1For k = 1 we anticipate a quantum restoration of the SU(2)3 global symmetry with the help of monopole

operators; unfortunately, it is difficult to exhibit it explicitly.
2We thank M. Benna for discussions on this issue.
3One of these quiver diagrams has already made an appearance in [15] as a Z2 projection of the ABJM

theory. However, in that case the choice of CS levels, (k,−k, k,−k), is different from the one in the present
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jecture that they are dual to M-theory on AdS4 × Q2,2,2/Zk; in this case the Zk breaks

the global symmetry to U(1)R × SU(2)2. We provide some support for this conjecture

by analyzing the simplest chiral operators in the gauge theory and matching them with

Kaluza-Klein harmonics. In section 7 we make a small detour and discuss a similar operator

matching for AdS4×M
3,2/Zk. Finally, in section 8 we consider giving vacuum expectation

values to some of the chiral superfields, and compare this with placing the M2-branes on

resolved cones.

Note added. After this paper was written, the authors of [60] and [61] informed us of

their upcoming work, in which 3d CS quivers are also studied.

2 Q1,1,1 and its dual gauge theory

Q1,1,1 is the homogenous coset space

SU(2) × SU(2) × SU(2)

U(1) × U(1)
(2.1)

which has U(1)R×SU(2)3 isometry [31]. Its metric is conveniently written as a U(1) bundle

over S2 × S2 × S2 [32]

ds2Q1,1,1 =
1

16

(

dψ +

3
∑

i=1

cos θidφi

)2

+
1

8

3
∑

i=1

(

dθ2
i + sin2 θidφ

2
i

)

, (2.2)

with θi ∈ [0, π), φi ∈ [0, 2π) and ψ ∈ [0, 4π). The cone4 over Q1,1,1 has metric dr2 +
r2ds2Q1,1,1 ; it is a Calabi-Yau 4-fold with holomorphic 4-form

Ω ∼ r4eiψ
“dr

r
+
i

4

`

dψ+
X

cos θidφi
´

”

∧

“

dθ1 + i sin θ1dφ1

”“

dθ2 + i sin θ2dφ2

”

∧

“

dθ3 + i sin θ3dφ3

”

. (2.3)

The toric diagram for C(Q1,1,1) is shown in figure 1.a. Its toric geometry is described

in terms of three SU(2) doublets of complex coordinates: (A1, A2), (B1, B2), (C1, C2).

The SU(2)3 symmetry is manifest in this description, but these coordinates are not gauge

invariant. The 8 gauge invariant combinations are [33, 51]

w1 = A1B2C1 w2 = A2B1C2 w3 = A1B1C2 w4 = A2B2C1

w5 = A1B1C1 w6 = A2B1C1 w7 = A1B2C2 w8 = A2B2C2 ,
(2.4)

which satisfy 9 relations

w1w2 − w3w4 = w1w2 − w5w8 = w1w2 − w6w7 = 0

w1w3 − w5w7 = w1w6 − w4w5 = w1w8 − w4w7 = 0

w2w4 − w6w8 = w2w5 − w3w6 = w2w7 − w3w8 = 0 ,

(2.5)

describing the embedding of C(Q1,1,1) in C
8.

paper.
4Throughout the paper, we use the notation C(X7) to denote the 8 real dimensional cone with 7-

dimensional base X7.
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(a) (b)

21

3

4

C2

C1

B2

B1

A1,A2

Figure 1. (a) toric diagram and (b) proposed quiver diagram for C(Q1,1,1).

A quiver U(N)4 CS gauge theory for M2-branes probing C(Q1,1,1) was proposed in [39].

As usual, the coordinates Ai, Bj , Cl were promoted to bifundamental chiral superfields (this

was also proposed in [33] but there the gauge group was only U(N)3). The quiver diagram

of [39] is shown in figure 1.b and its superpotential is

W = Tr(C2B1A1B2C1A2 − C2B1A2B2 C1A1) . (2.6)

The quiver and superpotential have a manifest SU(2)1 global symmetry under which

the chiral fields Ai form a doublet. The marginality of the superpotential imposes con-

straints on the R-charges:

R(Ai) +R(B2) +R(C1) = R(Ai) +R(B1) +R(C2) = 1 . (2.7)

In addition, there is a non-R U(1) symmetry; we assign the following charges under this

symmetry

Q(B1) =
1

2
, Q(B2) = −

1

2
, Q(C1) = −

1

2
, Q(C2) =

1

2
. (2.8)

The CS levels are ~k = (k, k,−k,−k). In [39], the moduli space of the abelian N = 1

gauge theory with k = 1 was computed using toric geometry techniques and shown to

correspond to C(Q1,1,1).5 This provided a test of the theory proposed in [39].

On the other hand, the U(1)R × SU(2) × U(1) symmetry of the non-abelian gauge

theory is only a subset of the U(1)R × SU(2)3 geometrical symmetry of Q1,1,1. This is an

important difference from the early proposal [33] which also attempted to introduce bi-

fundamental chiral superfields A1, A2, B1, B2, C1, C2 and a sextic superpotential for them.

However, it seemed impossible to write down such a quiver gauge theory with manifest

U(1)R × SU(2)3. The proposal of [39] circumvents this problem by reducing the manifest

symmetry. In the next section we will argue that, for k > 1, the gauge theory is actually

dual to AdS4 ×Q1,1,1/Zk, and that the orbifold action explains the reduction of symmetry

to U(1)R × SU(2) × U(1).

5In [39], it was also shown that the choice ~k = (1,−1, 0, 0) leads to the same moduli space.

– 5 –
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3 The Q1,1,1 gauge theory at higher CS level

In a general CS quiver gauge theory, one may define k = gcd(ki). When passing from

k = 1 to arbitrary k, the moduli space of a quiver CS theory changes from M (the one

arising solely from F and D-flatness) to M/Zk. This follows from a by now standard

argument [37, 38, 47] that we now review. Denote by nG the number of gauge groups.

Let us consider the abelian U(1)nG theory. For each node, we denote the corresponding

gauge field as Ai. It is straightforward to see that the overall U(1) given by BnG =
∑

i Ai

is decoupled from the scalars, since all of them transform in bifundamental or adjoint

representations. This field only appears through the CS coupling

S(BnG) =
k

nG2π

∫

(BnG−1)µǫ
µνρ(GnG)νρ , (3.1)

where GnG = dBnG and

BnG−1 =
1

k

∑

i

kiAi . (3.2)

We can dualize BnG into a scalar. We interpret GnG as an independent variable and add a

Lagrange multiplier imposing GnG = dBnG:

S(τ) =
1

2π

∫

τǫµνρ∂µ(GnG)νρ . (3.3)

Using the equations of motion for GnG , we have

(BnG−1)µ =
nG

k
∂µτ . (3.4)

Taking the full action for this sector (3.1)+(3.3), integrating it by parts and using (3.4),

we get

S =

∫

∂µ

( τ

2π
ǫµνρ(GnG)νρ

)

. (3.5)

This is a total derivative; however, in order for this phase to be unobservable, τ must be a

periodic variable with period 2π/nG. Following [37, 47], we impose
∫

⋆GnG = 2πnnG.6

We can now go back to (3.4), and note that we can locally set τ to a constant by

BnG−1 gauge transformations. However, the large gauge transformations for BnG−1 inherit

the periodicity of τ . Indeed, if we call the parameter of these transformations ΛnG−1, we

have ΛnG−1 = 2π
k . More explicitly, ΛnG−1 = k−1

∑

i kiθi, where θi is the gauge parameter

for the i-th node.

Let us now focus on the gauge transformations orthogonal to BnG, i.e. those which

leave this field unaffected. Since
∑

ki = 0, they are of the form θi = kiθ, for some constant

θ. After a straightforward computation, we get θ = 2π
~k2

.

Let us now specialize the above general discussion to the case of the Q1,1,1 theory with

CS levels ~k = (k, k,−k,−k). Following the expressions above, we have that θ1 = θ2 =

6This can be argued to follow from the original CS normalization. Since we are normalizing the CS

action with 1/4π for each Ai, we are implicitly assuming that
R

⋆Fi = 2π, so given the definition of BnG
it

seems reasonable to assume the normalization we chose.

– 6 –
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−θ3 = −θ4 = π
2 . The identifications imposed by the large gauge transformations on the

scalar fields are

(A1, A2) ∼ (A1, A2) , (B1, B2) ∼ (ei
π
kB1, e

−iπ
kB2) , (C1, C2) ∼ (ei

π
kC1, e

−iπ
kC2) . (3.6)

In terms of the angular coordinates in (2.2) this corresponds to

(φ2, φ3) ∼ (φ2, φ3) +

(

2π

k
,
2π

k

)

. (3.7)

Clearly, the Zk orbifold does not affect the holomorphic 4-form (2.3), and hence preserves

the N = 2 supersymmetry. However, it preserves only the SU(2)1 × U(1) subgroup of the

global symmetry. In terms of the coordinates wi (2.4), the orbifold action is given by

(w1, w2, w3, w4, w5, w6, w7, w8) → (w1, w2, w3, w4, e
i 2π
k w5, e

i 2π
k w6, e

−i 2π
k w7, e

−i 2π
k w8) .

(3.8)

This confirms that we are taking a Zk orbifold of Q1,1,1.

In the abelian N = 1 theory, the four operators w1, w2, w3, w4 from (2.4) are fully gauge

invariant, while w5, w6, w7, w8 are only invariant with respect to Q1 + Q3 and Q1 + Q4,

the two U(1)’s defined by the choice ~k = (k, k,−k,−k). The latter four are not invariant

under the Zk orbifold action. Together these operators correspond to the eight harmonics

of R-charge 1 on Q1,1,1 [52], but only the first four correspond to allowed harmonics on

Q1,1,1/Zk. We will describe an extension of this matching to the non-abelian N > 1 gauge

theory in the next section.

4 Matching of chiral operators

An essential test of the AdS/CFT correspondence involves matching the Kaluza-Klein

supergravity modes with gauge-invariant operators [41, 42]. For 3-dimensional theories

with N = 2 superconformal symmetry there exist chiral operators whose dimension is

given by the absolute value of the U(1)R charge. The simplest such spherical harmonics on

AdS4×Q
1,1,1 were found in [33, 52]: in terms of the coordinates Ai, Bj, Cl, they are given by

r
∏

a=1

AiaBjaCla . (4.1)

They carry U(1)R-charge r and transform with spins (r/2, r/2, r/2) under the global SU(2)3

symmetry; thus, there are (r+ 1)3 different harmonics. The Zk orbifold projects out some

of them. For example, for r = 1 only four out of the eight harmonics are invariant, as shown

in (3.8). For r = 2 and k ≥ 2, only 9 out of 27 modes survive the orbifold projection:

AiAjB1B2C1C2 , AiAjB
2
1C

2
2 , AiAjB

2
2C

2
1 . (4.2)

In general, for R-charge r < k, there are (r+1)2 modes invariant under the Zk action; they

have SU(2) spin r/2, and the global U(1) charge Q, defined in (2.8), ranging in integer

steps from −r to r.

– 7 –



J
H
E
P
0
8
(
2
0
0
9
)
0
3
3

Let us show that this matches the spectrum of gauge invariant operators in the quiver

theory. For simplicity, we will first take k ≫ 1 so that the theory is weakly coupled

and we can ignore the monopole operators. Due to the structure of the quiver and the

constraint (2.7), the gauge invariant mesonic operators carry integer R-charge r. For r = 1,

there are four such operators

TrAiC2B1 , TrAiB2C1 , (4.3)

and their SU(2) × U(1) charges agree with supergravity.

For r = 2 there are 9 gauge invariant chiral operators

TrAiC2B1AjC2B1 , TrAiB2C1AjB2C1 , TrAiC2B1AjB2C1 . (4.4)

Each of these operators is symmetric under the interchange of i and j, and thus carries

SU(2) spin 1. For the first two types, this is obvious from the cyclic symmetry of the trace.

For the third one it arises in a more interesting way, due to the F-term conditions coming

from the superpotential:

B1A1B2C1A2 = B1A2B2C1A1 , A2C2B1A1B2 = A1C2B1A2B2 (4.5)

Since these equations are supposed to hold for arbitrary B1, B2, they imply

A1B2C1A2 = A2B2C1A1 , A2C2B1A1 = A1C2B1A2 , (4.6)

which means that the A-fields may be permuted inside operators, producing symmetry in

the SU(2) index. This means that each chiral operator carries only the maximum possible

SU(2) spin consistent with its other charges.

In general, we may define SU(2) doublet operators of R-charge 1,

X+
i = AiC2B1 , X−

i = AiB2C1 , (4.7)

where ± denotes the U(1) charge. The R-charge r chiral operators are

Tr

r
∏

a=1

X±
ia
. (4.8)

The superpotential F-term conditions (4.6) guarantee that the SU(2) spin of such operators

is r/2, and the U(1) charges range in integer steps from −r to r. Therefore, as for example

in the conifold gauge theory [14], the superpotential is crucial for giving the spectrum of

chiral operators matching the supergravity modes.

Let us note that for r ≥ k some additional supergravity modes appear that are not

projected out by the orbifold. In order to construct the corresponding gauge invariant

operators one would need the monopole operators, which transform non-trivially under the

gauge group. Their discussion is beyond the scope of this paper.
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5 Orbifold projection of the quiver

In this section we explore another simple way of orbifolding the CS Q1,1,1 quiver theory,

namely using the orbifold projection techniques of [43]. There are various discrete symme-

tries of the gauge theory we could choose; for example, the Zp symmetry B1 → e2πi/pB1,

B2 → e−2πi/pB2. To simplify our discussion, we will exhibit the details for the case p = 2.

We start with the U(2N)4 quiver theory and consider the Z2 orbifold identifications

A1 = Ω†A1Ω B1 = −Ω†B1Ω C1 = Ω†C1Ω

A2 = Ω†A2Ω B2 = −Ω†B2Ω C2 = Ω†C1Ω ,
(5.1)

where

Ω =

(

l1 0

0 − l1

)

breaks the gauge symmetry to U(N)8. We obtain

A1 =

(

A1
1 0

0 A2
1

)

B1 =

(

0 B1
1

B2
1 0

)

C1 =

(

C1
1 0

0 C2
1

)

A2 =

(

A1
2 0

0 A2
2

)

B2 =

(

0 B1
2

B2
2 0

)

C2 =

(

C1
2 0

0 C2
2

)

The gauge fields are now

Vi =

(

V 1
i 0

0 V 2
i

)

, i = 1, 2, 3, 4 , (5.2)

so the kinetic term for the chiral supermultiplets is

SKahler =

∫

d4θ Tr

(

Ā1
i e

−V 1

3 A1
i e

V 1

4 + Ā2
i e

−V 2

3 A2
i e

V 2

4 + B̄2
1e

−V 2

1 B2
1e

V 1

3 + B̄1
1e

−V 1

1 B1
1e

V 2

3

+B̄2
2e

−V 2

4 B2
2e

V 1

2 + B̄1
2e

−V 1

4 B1
2e

V 2

2 + C̄1
1e

−V 1

2 C1
1e

V 1

3 + C̄2
1e

−V 2

2 C2
1e

V 2

3

+C̄1
2e

−V 1

4 C1
2e

V 1

1 + C̄2
2e

−V 2

4 C2
2e

V 2

1

)

. (5.3)

This charge assignment corresponds to the quiver diagram in figure 2. The superpoten-

tial reads

W =Tr(C1
2 B

1
1 A

2
1B

2
2 C

1
1 A

1
2+C

2
2 B

2
1 A

1
1B

1
2 C

2
1 A

2
2−C

1
2 B

1
1 A

2
2B

2
2 C

1
1 A

1
1−C

2
2 B

2
1 A

1
2B

1
2 C

2
1 A

2
1) .

(5.4)

We consider the choice of CS levels that descends from the parent Q1,1,1 theory, namely

k = (1, 1, 1, 1,−1,−1,−1,−1), where the order of nodes is (V 1
1 , V

2
1 , V

1
2 , V

2
2 , V

1
3 , V

2
3 , V

1
4 , V

2
4 ).

In appendix A, we compute the moduli space of this theory following [39]. Interestingly,

it is C(Q1,1,1/(Z2 × Z2)). The “doubling” of the orbifold group from the Z2 acting on the

quiver to Z2 × Z2 is not surprising; the same behavior was observed in [12, 47, 48] for the

orbifold projections of ABJM theory introduced in [15].
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Figure 2. Quiver diagram for a Z2 orbifold projection of the Q1,1,1 quiver.

Figure 3. Toric diagram for C(Q2,2,2).

6 M2-branes on C(Q2,2,2) and its orbifolds

The Qp,p,p manifolds are Zp orbifolds of Q1,1,1 that preserve the SU(2)3 isometry. Qp,p,p

is described by the same metric as Q1,1,1, (2.2), but with the ψ fiber having period 4π/p

The holomorphic 4-form given in (2.3) is invariant only for p = 1, 2. Thus, Qp,p,p is

supersymmetric only for p = 1, 2.

Our preceding analysis suggests that the gauge theory for Q2,2,2 arises neither as the

Q1,1,1 gauge theory at CS level 2 nor as a result of a Douglas-Moore projection of the

quiver. In this section we propose the gauge theory describing M2-branes on the cone over

Q2,2,2 and its orbifolds. Our construction is based on a correspondence with certain 4d

gauge theories and gives the desired moduli space.

The toric diagram for C(Q2,2,2) is shown in figure 3. It is a refinement of the C(Q1,1,1)

toric diagram in figure 1.a by the addition of a single internal point. This tells us that it is

a Z2 orbifold of C(Q1,1,1). Furthermore, we can see it has an SU(2)3 isometry by computing

the GLSM charges associated to this diagram.

By now, it is well understood that certain 3d CFTs with toric CY4 moduli spaces

can be generated by taking the same quivers and superpotentials for 4d CFTs with toric

CY3 moduli spaces [37–39, 53, 54]. The toric diagram for a CY3 is 2-dimensional (more

precisely, it is a plane in 3 dimensions). The CS levels control how the parent toric diagram

is “inflated” into the 3-dimensional one for the CY4.
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4

3

1 2

1 2

34

Figure 4. Quiver diagrams for M2-branes over C(Q2,2,2). The quivers are the same as the two

Seiberg dual phases for D3-branes over C(F0).

With these ideas in mind, it is not hard to identify a candidate CS quiver for C(Q2,2,2).

We just have to consider a 4d theory whose toric diagram corresponds to collapsing the

one in figure 3 onto a plane, namely it is a square with an internal point. This is the toric

diagram for a complex cone over F0, i.e. a Z2 orbifold of the conifold [49]. There are two

quivers for this geometry, related in 4d by the Seiberg duality [50] (see e.g. [55] for details).

We now check that both of them are candidates for the theory on M2-branes over C(Q2,2,2)

in the sense that they give the right moduli space and chiral operator spectrum.7

Let us first consider the so called phase I. Its quiver diagram is shown in figure 4.a,

and its superpotential is

WI = Tr ǫijǫmnX
i
12X

m
23X

j
34X

n
41 , (6.1)

and the CS levels ~k = (k, k,−k,−k).8 The R-charge of quartic gauge invariant operators

is 2 such that the superpotential is marginal.

The theory has a manifest SU(2)2 global symmetry, under which fields transform as

SU(2)1 SU(2)2

Xi
12

Xm
23

Xj
34

Xn
41

(6.2)

As a test of the proposal, we compute the moduli space for the abelian N = 1 gauge theory

with k = 1. We find that the moduli space is indeed C(Q2,2,2), whose toric diagram is

shown in figure 3. The full computation is presented in appendix B, where we use the

techniques in [39].

Following the general discussion in section 3, we can study the Q2,2,2 theory at higher

k. The action on the scalars is

Xi
12 ∼ Xi

12 , Xi
34 ∼ Xi

34 , (Xm
23,X

m
41) ∼ (ei

π
k Xm

23, e
−iπ

k Xm
41) . (6.3)

7These models have been already considered in the context of M2-branes in [56].
8This quiver with a different choice of CS levels, ~k = (k,−k, k,−k), appeared in [15] as an orbifold of

ABJM theory. This theory appears to describe M2-branes on (C2/Z2)
2/Zk [38].
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We conclude that the action of the CS orbifold preserves the SU(2)1 × SU(2)2 global

symmetry.

Let us now consider the phase II quiver diagram figure 4.b; in 4 dimensions it is related

to phase I through Seiberg duality. It is interesting that the quiver for phase II corresponds

to “doubling” the one for Q1,1,1 presented in section 2. The superpotential is given by

WII = Tr
(

ǫij ǫmnX
i
32X

m
24X

jn
43 − ǫij ǫmnX

m
31X

i
14X

jn
43

)

, (6.4)

and the CS levels are ~k = (k, k,−k,−k). The theory has an SU(2)2 global symmetry, under

which fields transform as
SU(2)1 SU(2)2

Xi
32

Xi
14

Xm
31

Xm
24

Xim
43

(6.5)

Once again, we can test the proposal by computing the moduli space for the abelian

N = 1 gauge theory with k = 1 and verify that it is indeed C(Q2,2,2). The corresponding

calculation is given in appendix B. For a general k, the scalars are identified according to

Xim
43 ∼ Xim

43 , (Xi
14,X

i
32) ∼ (ei

π
k Xi

14, e
−iπ

k Xi
32) , (Xm

24,X
m
31) ∼ (ei

π
k Xm

24, e
−iπ

k Xm
31) .

(6.6)

As before, the CS orbifold preserves the SU(2)1 × SU(2)2 global symmetry.

6.1 Chiral operators

The Kaluza-Klein harmonics on Q2,2,2 are a subset of those on Q1,1,1. Since the orbifold

action divides the range of ψ by 2, the harmonics with odd R-charge are not single-valued

on Q2,2,2. So, before taking the Zk orbifold of Q2,2,2, we find harmonics with SU(2)1 ×

SU(2)2 × SU(2)3 quantum numbers J1 = J2 = J3 = n at R-charge 2n. The three magnetic

quantum numbers mi range from −n to n in integer steps; thus, the total number of

R-charge 2n states is (2n+ 1)3.

The Zk orbifold projects out some of these modes. In this case the orbifold acts by

a rotation of the third 2-sphere by 2π/k and thus breaks SU(2)3. As a result, we pick

out only the m3 = 0 states invariant under rotations around the z-axis of the third S2.

Therefore, we are left with (2n+ 1)2 states transforming with spin J1 = J2 = n under the

remaining SU(2)1 × SU(2)2.

We now reproduce this result in the two gauge theories introduced in the previous

section. Let us focus on k ≫ 1 and consider the mesonic operators only, which do not

contain monopole operators.

Phase I. In this model, the construction of chiral operators is particularly simple. The

analysis is exactly the same as in the 4d gauge theory dual to AdS5 × T 1,1/Z2. We can

immediately write down 16 quartic objects corresponding to all possible length 4 loops

around the quiver:

Xij,mn
I = Xi

12X
m
23X

j
34X

n
41 . (6.7)
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The R-charge 2 chiral operators are TrXij,mn
I , but there are only 9 of them. Applying the

superpotential F-term relations to them,

X1
12X

m
23X

2
34 = X2

12X
m
23X

1
34 , X1

23X
j
34X

2
41 = X2

23X
j
34X

1
41 , etc. (6.8)

we find that the SU(2)1 and SU(2)2 indices are symmetrized. Therefore, these operators

have R = 2 and spins J1 = J2 = 1. In general, the R = 2n chiral operators take the form

Tr
n
∏

a=1

Xiaja,ma,na
I , (6.9)

with SU(2)1 and SU(2)2 indices symmetrized due to the F-term relations. These operators

thus have spins J1 = J2 = n, matching the gravity result.

Phase II. Since in 4 dimensions this theory is a Seiberg dual of phase I, we expect to

find the same spectrum of chiral operators. Let us work it out explicitly. As a warm-up,

we write down the 9 spin (1, 1), R = 2, gauge-invariant chiral operators

TrXi
14X

jm
43 X

n
31 , (6.10)

where SU(2)1 and SU(2)2 indices are symmetrized due to the F-term equations. These

operators have R = 2 due to marginality of the superpotential (6.4). There is an additional

set of operators of the same form, where we change the gauge group index 1 → 2. They

are equal to the operators above via the F-term relation

Xi
32X

m
24 = Xm

31X
i
14 . (6.11)

In general, the R = 2n chiral operators are given by

Tr

n
∏

a=1

Xiaja,ma,na
II , (6.12)

where Xij,mn
II = Xi

14X
jm
43 X

n
31. Symmetrization over SU(2)1 and SU(2)2 indices follows from

the superpotential F-term conditions, leading to spin J1 = J2 = n and again matches the

gravity result.

7 Chiral operators in the M3,2 gauge theory

In this section we make a small digression from the main topic of this paper, namely

Q1,1,1 and its orbifolds, and study chiral operators in the gauge theory for M2-branes on

C(M3,2)/Zk. This theory exhibits a similar behavior to other examples we have considered:

the Zk orbifold preserves only the subgroup of the geometrical symmetries that is manifest

in the gauge theory.

The CS gauge theory for M3,2 was introduced in [37, 38] and further studied in [56].

The quiver diagram is shown in figure 5, and the superpotential is

W = Tr
(

ǫijkX
i
12X

j
23X

k
31

)

, i, j, k = 1 . . . 3 . (7.1)
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Figure 5. Quiver diagram for M2-branes over C(M3,2).

Curiously, these are the same as in the well-known theory for D3-branes on C
3/Z3 [44, 45].

Note that, even in the abelian theory, the superpotential does not vanish. The CS levels

are (−2k, k, k). The theory has a manifest U(1)R × SU(3) × U(1) global symmetry, while

the isometries of M3,2 are U(1)R × SU(3) × SU(2).

Let us first consider N = 1 and k = 1. In this case, the moduli space of the gauge

theory was computed in [37, 38], and found to agree with C(M3,2). The choice of CS levels

dictates that the chiral operators have to be invariant only under the Q2−Q3 combination

of the U(1) gauge symmetries. The simplest such operators are

Xijk = Xi
12X

j
23X

k
31 , Xijk

+ = Xi
23X

j
31X

k
31 , Xijk

− = Xi
23X

j
12X

k
12 . (7.2)

The F-term relations

ǫijkX
j
23 X

k
31 = 0 , ǫijkX

k
31X

i
12 = 0 , ǫijkX

i
12X

j
23 = 0 , (7.3)

imply that each of the R-charge 2 operators is in the 10 of SU(3), with Xijk, Xijk
+ and

Xijk
− corresponding to m = 0, 1,−1 members of an SU(2) triplet, respectively. This agrees

with the quantum numbers of the R = 2 spherical harmonics on M3,2 [33].

Let us now turn to general k. Under the Zk orbifold, the fields transform as

Xi
12 ∼ e−iπ

k Xi
12 , Xi

23 ∼ Xi
23 , Xi

31 ∼ ei
π
k Xi

31 . (7.4)

This action corresponds to e2πiJ3/k and therefore breaks the SU(2) part of the global

symmetry. Only the m = 0 operators Xijk in (7.3) are invariant.

In the non-abelian theory, the single-trace gauge invariant chiral operators assume

the form

Tr

n
∏

a=1

Xiajaka . (7.5)

These operators have R-charge R = 2n and are in the symmetric 3n-box representation

of SU(3) due to F-term relations. Let us compare this with the spectrum of spherical

harmonics. For M3,2 one finds that hypermultiplet states with R = 2n are in the symmetric

3n-box representations of SU(3), and in the spin J = n representation of SU(2) [33]. For

M3,2/Zk the SU(2) is broken by the action e2πiJ3/k, and we must retain only the m = 0

state from each SU(2) multiplet. The resulting spectrum agrees with the gauge invariant

operators we have constructed.
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Figure 6. Resolutions of C(Q1,1,1). Starting from the toric diagram in figure 1.a we remove points

(indicated with white circles). This operation results in: a) C(T 1,1) × C and b) C
4.

8 Resolutions of C(Q1,1,1)

In this section, we investigate possible symmetry breaking states in the Q1,1,1 candidate

theory [39]. Experience with D3-branes on the conifold [57] suggests that their dual gravity

description is expected to involve M2-branes on resolved cones over Q1,1,1. C(Q1,1,1) is a

C
2 bundle over P

1 ×P
1; its resolutions correspond to blowing-up the P

1’s. Blowing-up one

P
1 produces C(T 1,1) × C. A generic blow-up of the remaining P

1 resolves the singularity

completely, resulting in C
4. The sequence of resolutions is then

C(Q1,1,1) → C(T 1,1) × C → C
4 . (8.1)

This sequence is nicely described in terms of toric diagrams as shown in figure 6. In this

language, blowing-up a P
1 corresponds to removing a point. For higher k the resulting

space will be sensitive to the orientation between the blown-up P
1 and the orbifolded ones.

For a single blown-up P
1 we should then expect two possibilities depending whether it is

orbifolded or not.

From a field theory perspective, resolutions correspond to turning on VEV’s for the

scalar component of a chiral superfield. These VEV’s break conformal invariance. Flowing

to energies much lower than the scale set by the VEV’s, we obtain a new CFT that

results from Higgsing gauge groups and integrating out massive fields. In the theories we

are considering, the gauge group is U(N). Thus, an FI term is required to achieve the

resolutions. Such supersymmetric FI deformations have been studied in [58] and recently

considered for resolution purposes in [59].

In the next section, we restrict to the abelian theory and compute the moduli space

of the resulting IR CFT after turning on VEV’s. We then compare this geometry with

the one resulting from blowing-up P
1’s, finding agreement. This matching provides further

support for our identification of the Q1,1,1 theory (and its orbifolds).

It is important to emphasize that, although the abelian intuition provides valuable

guidance in the determination of new theories, it does not probe their non-abelian structure.
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Figure 7. Quiver diagram for a partial resolution of the Q1,1,1 theory. For the abelian theory, the

moduli space is C × C(T 1,1).

Thus the theories we obtain by turning on VEV’s should be regarded as potential candidates

for new M2-brane theories, but further checks are required to determine whether they can

be promoted to non-abelian theories on stacks of M2-branes.

8.1 Symmetry breaking in the gauge theory

We presented the Q1,1,1 quiver in figure 1.b and its superpotential in (2.6). The are two dis-

tinct options for blow-ups: either giving a VEV to one of the internal fields (namely to one

Ai) or to one of the external ones (a Bi or a Ci). We now investigate the two alternatives.

a) Turning on a VEV for A1. The quiver becomes that in figure 7 where we have

renamed A2 = Φ, and the superpotential is

W = Φ
(

C2B1B2C1 −B2C1C2B1

)

. (8.2)

Nodes 3 and 4 are combined into one node which we indicate as 3/4; this corresponds to

breaking of U(N)3 ×U(N)4 to the diagonal U(N) subgroup. Starting from Q1,1,1 with ~k =

(1, 1,−1,−1), we end up with (k1, k2, k3/4) = (1, 1,−2) (the CS levels of the higgsed gauge

groups are added). We can choose the effective D-terms to be given by the combination

Q2 −Q1. The resulting invariants are

z1 = B1C2 z2 = B2C1 w = Φ

z3 = B1C1 z4 = B2C2
(8.3)

As might have been expected, the adjoint field parameterizes a C factor, while the zi (made

out of Bi and Ci) parameterize a conifold. In fact, even though it is not a necessary con-

dition, the superpotential (8.2) factorizes as the adjoint times the conifold superpotential.

We see that the gauge theory computation reproduces the geometric expectation when

blowing up a P
1.

Let us now consider the general k case. In the IR, we now have (k1, k2, k3/4) =

(k, k,−2k). After fixing the gauge, we are left with the following discrete identifications

B1 ∼ B1 e
iπ
k B2 ∼ B2 e

−iπ
k

C1 ∼ C1 e
iπ
k C2 ∼ C2 e

−iπ
k

(8.4)

This translates into

z3 ∼ z3 e
i 2π
k z4 ∼ z4 e

−i 2π
k , (8.5)

without any identification for the C factor.
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Figure 8. Quiver diagram for another partial resolution of the Q1,1,1 theory. For the abelian

theory, the moduli space is C × C(T 1,1).

b) Turning on a VEV for B1. The quiver becomes the one in figure 8, with superpo-

tential

W = C2A1B2C1A2 − C2A2B2C1A1 . (8.6)

Nodes 1 and 3 are now combined into one; this corresponds to breaking of U(N)1 ×

U(N)3 to the diagonal U(N) subgroup. Starting from Q1,1,1 with ~k = (1, 1,−1,−1) we are

left with (k1/3, k2, k4) = (0, 1,−1). We can take Q2 +Q4 to give the effective D-terms. The

resulting invariants are

z1 = A1C1 z2 = A2C2 w = B2

z3 = A2C1 z4 = A1C2
(8.7)

Clearly z1z2− z3z4 = 0, so the zi parametrize C(T 1,1) while w parametrizes C. The moduli

space is once again C × C(T 1,1), in agreement with the geometric expectation.

Let us now take general k. In the IR, we are left with (k1/3, k2, k4) = (0, k,−k).

Repeating the computation above, we obtain the discrete identifications

A1 ∼ A1 e
iπ
k A2 ∼ A2 e

iπ
k B2 ∼ B2 e

−i 2π
k

C1 ∼ C1 e
iπ
k C2 ∼ C2 e

−iπ
k

(8.8)

which translate into

z1 ∼ z1e
i 2π
k z3 ∼ z3e

i 2π
k w ∼ we−i 2π

k . (8.9)

This is a somewhat different Zk orbifold of C × C(T 1,1).
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A Moduli space of the Z2 orbifold of the quiver

Here we use the techniques of [39] to compute the moduli space of the theory introduced

in section 5 in the abelian, N = 1 case with k = 1. We find a new example of a phe-

nomenon already observed for orbifolds of the ABJM theory: a Zp orbifold projection of

the quiver [15] leads to a Zp × Zp orbifold of the moduli space [47, 48].
The quiver and GLSM fields are related by the matrix

P =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

A1

1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A2

1
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A1

2
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A2

2
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B1

1
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0

B2

1
0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

B1

2
0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

B2

2
0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0

C1

1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0

C2

1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

C1

2
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1

C2

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(A.1)

The charge matrix for the F-term constraints is then

QF =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 1

0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 −1 0 1 0

0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0

0 0 0 0 1 0 0 0 0 0 −1 0 −1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 −1 0 0 0 −1 0 1 0 0 0 0 0

0 0 0 0 1 0 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(A.2)

The quiver charges are given by

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

Q1

1
0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Q2

1
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0

Q1

2
0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0

Q2

2
0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

Q1

3
−1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Q2

3
0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Q1

4
1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

Q2

4
0 0 0 1 0 0 −1 1 1 −1 0 0 0 0 0 0 0 −1 0 0

(A.3)

The CS levels are k = (1, 1, 1, 1,−1,−1,−1,−1), where the order of nodes is
(V 1

1 , V
2
1 , V

1
2 , V

2
2 , V

1
3 , V

2
3 , V

1
4 , V

2
4 ). Then, we can take (Q1

1 + Q1
3, Q

1
1 + Q2

3, Q
1
1 + Q1

4, Q
1
1 +
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Figure 9. Toric diagram for the moduli space of the theory introduced in section 5. It corresponds

to C(Q1,1,1/(Z2 × Z2)). The numbers indicate the multiplicity of the corresponding GLSM fields.

Q2
4, Q

2
1 +Q1

3, Q
1
2 +Q1

3) as D-terms,

QD =

0

B

B

B

B

B

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

−1 0 0 0 −1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 −1 −1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 0 −1 1 1 −1 1 0 0 0 0 0 0 −1 0 0

−1 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 1 0 0

−1 0 0 0 0 0 1 0 −1 1 0 0 0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

A

(A.4)

The toric diagram is computed as the kernel of Qtot = (QF , QD), and is given by

GT =

0

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

0 0 0 0 0 1 −1 0 −1 0 0 1 0 −1 −1 0 1 0 0 1

1 2 0 1 1 2 0 1 1 2 0 1 2 1 2 1 1 0 1 0

0 0 0 0 0 −2 2 0 1 −1 1 −1 −1 1 0 0 −1 1 0 0

0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

C

C

C

C

A

(A.5)

All columns add up to one. We can drop, for example, the second row. Applying an

SL(3,Z) transformation, we take the toric diagram to the simple form in figure 9. The

toric diagram of C(Q1,1,1) is refined by a factor 2 in two directions, hence the moduli space

is C(Q1,1,1/(Z2 × Z2)).

Moduli space at CS level k. Let us now study the abelian N = 1 theory at general k.

Since we focus on the abelian case, and to simplify comparison, we drop any ordering of

fields associated with the quiver in all expressions that follow.

Let us first consider k = 1. The Z2 × Z2 orbifold action on C(Q1,1,1) is

Z2|1 : (w1, w2, w3, w4, w5, w6, w7, w8) → (−w1,−w2,−w3,−w4, w5, w6, w7, w8)

Z2|2 : (w1, w2, w3, w4, w5, w6, w7, w8) → (w1, w2, w3, w4,−w5,−w6,−w7,−w8)
(A.6)

where the {wi} are the complex variables in C(Q1,1,1). The next step is to construct

the monomials that are invariant under the orbifold action, which take the general form

za = wiwj . Taking into account the Q1,1,1 relations satisfied by the wi, we are left with

15 independent monomials. Modding by the equivalence relations of the underlying Q1,1,1
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(which we collectively denote by I(Q1,1,1)), we have that the coordinate ring of the variety

is C[za]/I(Q
1,1,1). More explicitly

C[w2
1, w

2
2, w

2
3 , w

2
4, w1w2, w1w3, w1w4, w2w3, w2w4, w

2
5, w

2
6 , w5w6, w

2
7 , w

2
8, w7w8]

I(Q1,1,1)
. (A.7)

Let us now turn to gauge theory. The operators invariant under the U(1) actions

defined by (A.4) are

z1 = A1
1A

2
1B

1
2 B

2
2 C

1
1 C

2
1 z2 = A1

2A
2
2B

1
1 B

2
1 C

1
2 C

2
2

z3 = A1
1A

2
1B

1
1 B

2
1 C

1
2 C

2
2 z4 = A1

2A
2
2B

1
2 B

2
2 C

1
1 C

2
1

z5 = A1
1A

2
2B

1
1 B

2
2 C

1
1 C

1
2 z6 = A1

1A
2
1B

1
1 B

2
2 C

1
1 C

1
2

z7 = A1
1A

2
2B

1
2 B

2
2 C

1
1 C

2
1 z8 = A1

1A
2
2B

1
1 B

2
1 C

1
2 C

2
2

z9 = A1
2A

2
2B

1
1 B

2
2 C

1
1 C

1
2 z10 = A1

1A
2
1B

1
1 B

2
1 C

1
1 C

2
1

z11 = A1
2A

2
2B

1
1 B

2
1 C

1
1 C

2
1 z12 = A1

1A
2
2B

1
1 B

2
1 C

1
1 C

2
1

z13 = A1
1A

2
1B

1
2 B

2
2 C

1
2 C

2
2 z14 = A1

2A
2
2B

1
2 B

2
2 C

1
2 C

2
2

z15 = A1
1A

2
2B

1
2 B

2
2 C

1
2 C

2
2

(A.8)

Notice that while z1 to z9 are invariant under the full gauge symmetry of the quiver, z10
to z15 require monopole operators. One can verify that these operators are in one to one

correspondence with the za and they satisfy the same relations. We thus conclude, from

a gauge theory calculation alternative to the one in the previous section, that the moduli

space of the theory is C(Q1,1,1/(Z2 × Z2)).
Let us now consider general k. The Zk orbifold acts on the chiral operators as

(z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14, z15) →

(z1, z2, z3, z4, z5, z6, z7, z8, z9, e
i 2π

k z10, e
i 2π

k z11, z
i 2π

k z12, e
−i 2π

k z13, e
−i 2π

k z14, e
−i 2π

k z15)
(A.9)

The orbifold acts on {z10, z11, z12, z13, z14, z15}, which in terms of the original Q1,1,1 co-

ordinates is the set {w5, w6, w7, w8}. We thus conclude that the moduli space at higher

general k is

C

(

Q1,1,1

Z2 × Z2k

)

. (A.10)

B Moduli space of the Q2,2,2 theories

Let us compute the moduli spaces for the abelian N = 1 case of the two theories in section 6

with k = 1.

Phase I. Quiver and GLSM fields are related by

P =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8

X1

12 1 1 0 0 0 0 0 0

X2

12 1 0 0 0 1 0 0 0

X1

23 0 0 1 1 0 0 0 0

X2

23 0 0 1 0 0 0 1 0

X1

34 0 1 0 0 0 1 0 0

X2

34 0 0 0 0 1 1 0 0

X1

41 0 0 0 1 0 0 0 1

X2

41 0 0 0 0 0 0 1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(B.1)
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Then, F-terms are implemented by the matrix

QF =

0

B

@

p1 p2 p3 p4 p5 p6 p7 p8

0 0 1 −1 0 0 −1 1

1 −1 0 0 −1 1 0 0

1

C

A
(B.2)

The quiver charges associated with GLSM fields are

p1 p2 p3 p4 p5 p6 p7 p8

Q1 −1 0 0 0 0 0 0 1

Q2 1 0 −1 0 0 0 0 0

Q3 0 0 1 0 0 −1 0 0

Q4 0 0 0 0 0 1 0 −1

(B.3)

We consider CS levels ~k = (1, 1,−1,−1). Hence, we can take effective D-terms given
by the combinations Q1 −Q2 and Q1 +Q3.

QD =

0

B

@

p1 p2 p3 p4 p5 p6 p7 p8

−2 0 1 0 0 0 0 1

−1 0 1 0 0 −1 0 1

1

C

A
(B.4)

The toric diagram is finally given by

GT =

0

B

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8

0 0 −1 0 0 0 0 1

0 0 0 −1 0 0 1 0

1 2 2 2 0 1 0 0

0 −1 0 0 1 0 0 0

1

C

C

C

C

C

A

(B.5)

All columns add up to one. Dropping the third row, we have the toric diagram for C(Q2,2,2)

shown in figure 3, with multiplicity 2 for the GLSM fields in the node at the center.
Simple inspection of Qtot, indicates that we indeed have an additional SU(2)3 symme-

try. The GLSM fields transform according

SU(2)1 SU(2)2 SU(2)3

(p2, p5)

(p4, p7)

(p3, p8)

(B.6)

and the rest are singlets, i.e. each SU(2) factor exchanges the GLSM fields on opposite

corners of the toric diagram.

Phase II. The matrix relating the quiver and GLSM fields is

P =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9

X1

32 1 0 0 0 0 1 0 1 0

X2

32 1 0 0 0 0 0 1 1 0

X1

24 0 1 1 0 0 0 0 0 1

X2

24 0 1 0 1 0 0 0 0 1

X1

31 1 1 1 0 0 0 0 0 0

X2

31 1 1 0 1 0 0 0 0 0

X1

14 0 0 0 0 0 1 0 1 1

X2

14 0 0 0 0 0 0 1 1 1

X11

43 0 0 1 0 1 1 0 0 0

X12

43 0 0 0 1 1 1 0 0 0

X21

43 0 0 1 0 1 0 1 0 0

X22

43 0 0 0 1 1 0 1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(B.7)
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From it, we read the matrix implementing the F-term constraints

QF =

0

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9

1 −2 1 1 0 −1 −1 0 1

0 −1 1 1 0 −1 −1 1 0

0 1 −1 −1 1 0 0 0 0

1

C

C

C

A

(B.8)

Quiver charges are given by

p1 p2 p3 p4 p5 p6 p7 p8 p9

Q1 0 −1 0 0 0 0 0 0 1

Q2 −1 1 0 0 0 0 0 0 0

Q3 1 0 0 0 −1 0 0 0 0

Q4 0 0 0 0 1 0 0 0 −1

(B.9)

We consider CS levels k = (1, 1,−1,−1). Then, we can impose the Q1+Q3 and Q2+Q3

D-terms

QD =

0

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9

1 −1 0 0 −1 0 0 0 1

0 1 0 0 −1 0 0 0 0

1

C

A
(B.10)

The toric diagram is obtained as the kernel of Qtot = (QF , QD), and is given by

GT =

0

B

B

B

B

B

@

p1 p2 p3 p4 p5 p6 p7 p8 p9

−1 0 0 0 0 0 0 0 1

2 1 2 0 1 2 0 1 0

0 0 0 0 0 −1 1 0 0

0 0 −1 1 0 0 0 0 0

1

C

C

C

C

C

A

(B.11)

We can drop the second row and plot the toric diagram. The result is C(Q2,2,2) toric

diagram in figure 3, with multiplicity 3 for the GLSM fields associated with the node at

the center.
As for phase I, we see the full SU(2)3 symmetry of Q2,2,2. GLSM fields on opposite

corners of the toric diagram form doublets according to

SU(2)1 SU(2)2 SU(2)3

(p6, p7)

(p3, p4)

(p1, p9)

(B.12)
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